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Abstract. We simulate a kinetic growth model on the square lattice using a Monte Carlo
approach in order to study ramified polymerization with short-distance attractive interactions
between monomers. The phase boundary separating finite from infinite growth regimes is
obtained in the(T , b) space, whereT is the reduced temperature andb is the branching
probability. In the thermodynamic limit, we extrapolate the temperatureT ∗ = 0.102± 0.005
below which the phase is found to be always infinite. We also observe the occurrence of a
roughening transition at the polymer surface.

Since a single polymer chain was originally idealized by a random walk [1] on a periodic
lattice, more and more complex models for the polymerization phenomenon have arisen
in the literature. Theself-avoiding random walk[2, 3] describes a chain which can never
intersect itself. It models a linear polymer in dilute solution with a good solvent.

An alternative model which describes a linear polymer chain is thekinetic growth walk
[4–6]. In this model, the tip of the chain grows, at each time unit, toward one of the nearest-
neighbourunvisited sites and stops if all the surrounding neighbours are occupied. This
model was generalized to incorporate thebranching possibility and also the presence of
impurities [7]. It exhibits a finite–infinite transition due to competition among ramification
and hindrances. Recently, the topological and dynamical aspects of this generalized kinetic
growth model have been investigated [8]. In this study, a kind of roughening transition at
the polymer surface was also detected.

In the present letter, we study the polymerization on the square lattice in an even more
realistic way. For this purpose, we include, in the kinetic growth model, short distance
attractive forces between the monomers. At a fixed time of the polymer growth we employ
a Monte Carlo method for sampling the configuration space. So the evolution of the system
is quasi-static and is always in a thermal bath equilibrium. Besides the reduced temperature
T , the other relevant parameter is the branching probabilityb (we only study the case in
which the impurity concentrationc is zero). We find a critical line in the(T , b) plane
which separates the finite from infinite phase. At low temperatures, due to the presence
of attractive forces, the cluster structure gets more compact with a decreasing occurrence
of steric hindrances, as will be explained below. We also detect a secondary transition
occurring at all temperatures, which is related to the roughness of the polymer surface.

Let us now briefly review the kinetic growth model. Each sitei of an L × L square
lattice may be empty or occupied by a monomer. Initially, only the centre is occupied.
At time t = 0, the polymer starts growing from the origin towards a randomly chosen
adjacent site. Att = 1, this site is filled and becomes the new growing end which now
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may bifurcate with probabilityb or keep its linear growth with probability 1− b. Over
each new growing tip, this process is applied recursively always respecting self-avoidance.
All available growth directions are equally probable. At each timet , all current growing
ends are sequentially visited in a clockwise manner following the order of births. All tips
are connected to the origin byt bonds. The tip always tries to avoid filled regions, but
sometimes may find itself in a trap without exit, i.e., in a ‘cul de sac’. Then it stops. The
experiment finishes when either the cluster touches the lattice boundary (infinite polymer)
or all tips are dead ends (finite polymer).

We consider the kinetic growth model as treated in [7, 8] but now modified in order to
include an attractive energy,ε (ε < 0), for eachpair of nearest-neighbour monomers. The
reduced temperatureT is defined byT = 1/β|ε|. We now describe how we developed
the Monte Carlo method. Consider every pair of sites formed by a growing tip at timet

and an occupied adjacent site. LetNt be the total number of such pairs. Using the growth
mechanism explained above, there are, at each staget , many different configurations toward
which the system can evolve. LetC1 be the first configuration at timet + 1 generated by
applying the growth rules at timet . This adds an energyE1 = εNt+1(C1) to the total energy.
A second configurationC2 will always be accepted ifE2 < E1, otherwise a random number
r is drawn and the new configuration is only accepted ifr < e−β(E2−E1). This process is
repeatedNM (a previously fixed number of Monte Carlo steps) times. Observe that our
prescription resembles the alogorithms of Swendsen–Wang [9] or Wolff [10] in the sense
that the whole perimeter is flipped when passing from a configurationCk to Ck+1. In
general, this kind of dynamics reduces harmful effects such as the critical slowing down.
Finally, we must point out that, at afixed time, the number of bifurcations occurring in the
first configuration is kept constant alongall NM Monte Carlo steps. If this were not so,
certainly the transition from one configuration to another would systematically favour those
with more bifurcated sites (once they have smaller energies). This care avoids a biased
simulation that might corrupt the meaning ofb as an external parameter. Of course, this
number changes with time.

The order parameterof the system is defined as the fraction of the polymers which are
infinite [7]. The locus of the vanishing order parameter defines a critical line in the(T , b)

space. We can measure thecorrelation lengthξ of the system through [7]:ξ ≡ 〈(lxly)1/2〉,
wherelx andly are the sizes of the smallest rectangle which contains afinite polymer when
a particular experiment finishes. With this definition the correlation length has the following
behaviour: at high temperatures,ξ is small because there is a large number of hindrances
hampering the polymer growth and, at small temperatures, this number diminishes due to
the presence of attractive forces. This means that most of the polymers are infinite, so,
in order for a cluster to remain finite, it must die quickly or it never will andξ is again
small. The maximum ofξ locates the bulk phase transition which separates finite from
infinite growth regimes. At this point,ξ grows with the lattice sizeL. Of course, in the
limit T → ∞, the bond energy between monomers is irrelevant and we should reproduce
previous results [7, 8].

To show some typical graphs is both illustrative and instructive. The first graph
(figure 1(a)) is a linear chain(b = 0) which is infinite at T = 0. This result is completely
different from that of the original kinetic model (without attractive interactions) where, for
b = 0, the system is in thefinite phase! The cluster is compact and displays a bond
parallelism. The reason is as follows. When the unique growing tip bends, the minimum
energy criterion obliges it to turn again following a path which is parallel to its own structure.
This behaviour precludes the appearance of vacancies, compacts the system and keeps the
tip growing indefinitely. One should also mention that, atT = 0, the phase is infinite
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Figure 1. Typical graphs simulated on a square lattice of sizeL = 51, with NM = 400.

for every b > 0. In figure 1(b), we show a simulated cluster forT = 0 and b = 0.5.
The surface acquires the shape of a lozenge and becomes smooth thus indicating that a
roughening transition is occurring. In fact, for a determined temperature, we can observe
that asb increases, the mean number of threefold sites〈N3〉 passes through amaximum
which is a clue to the roughening transition (see [8]). This phenomenon happens at all
temperatures. The peak of〈N3〉 occurs atb ≈ 0.20 at low temperatures(T < 0.5) and
tends tob ≈ 0.15 at high temperatures. The other two graphs were simulated withT = 0.5.
The cluster is finite atb = 0.01 (figure 1(c)) whereas it is infinite atb = 0.03 (figure 1(d)).

We now present thephase diagramof the system in the(T , b) plane (figure 2).
The critical line is the locus of diverging correlation length. A second-order phase
transition separates finite from infinite growth regimes. This line touches the axisT at
T = 0.115± 0.005 (this point was particularly obtained by looking for the peak ofξ at
constantb = 0). All other points were determined by fixing the temperatures. They carry an
uncertainty of order1b ∼ 10−3 and were smoothly connected as a guide to the eyes. In our
simulations, the thermal equilibrium (measured by the stabilization of the system energy)
is attained around 400 Monte Carlo steps foreach time interval [t, t + 1]. We simulate
systems of sizeL = 1501, average over 100 experiments, and the results are presented in
figure 2. Although we have not extrapolated to the thermodynamical limit(L → ∞) we
believe that our results are very close to the real phase diagram since simulations that we
have also performed for systems of sizeL = 1001 differ less that 3% in respect to the
L = 1501 case.
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Figure 2. The phase diagram in the(T , b) space corresponding toL = 1501.

Let us now discuss the phase diagram. In the limitT → ∞, our estimatebc ≈ 0.051 is
in good agreement with previous results [7, 8]. In this high-temperature regime, the phase
transition results from the competition between hindrances and branching. The attractive
energy between monomers does not play any role. On the other hand, at low temperatures,
the steric hindrance effect is so reduced (due to the presence of the attractive forces) that
even the finite phase disappears!

On the axisb = 0, we have determined the critical temperaturesT ∗(L) for systems
of sizesL = 501, 1001 and 1501 and extrapolated the valueT ∗ = 0.102± 0.005 using
the Bulirsch–Stoer (BST) algorithm [11, 12]. At this point, the order parameter seems to
approach a step function, indicating that a first-order phase transition is perhaps taking place.
We do not discard the possibility thatT ∗ may correspond to a tricritical temperature where
the second-order line ends. It would be interesting to study this point further and also to
obtain some thermodynamic properties of this system such as, for example, the specific
heat. Then the question of universality along the critical line could be addressed.
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